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Abstract. The general solution of the graded contraction equations fmg%{ grading of

the real compact simple Lie algebsa(N + 1) is presented in an explicit way. It turns

out to depend on’® — 1 independent real parameters. The structure of the general graded
contractions is displayed for the low-dimensional cases, and kinematical algebras are shown to
appear straightforwardly. The geometrical (or physical) meaning of the contraction parameters
as curvatures is also analysed; in particular, for kinematical algebras these curvatures are directly
linked to geometrical properties of possible homogeneous spacetimes.

1. Introduction

Graded contractions of (complex or real) Lie algebras have been introduced by de Montigny,
Patera and Moody [1, 2] as a new approach encompassing the study of ordinary contractions
of Lie algebras and allowing the contraction of representations to be simultaneously studied.
The approach is based on the so-caltedtraction equationswhich determine all possible
contracted Lie algebras compatible with a given grading of some initial Lie algebra [3].
Ordinary (simple) ldni—Wigner (IW) contractions [4] appear as related H,ajrading; the
solution of the contraction equations is straightforward in this case. For more complicated
grading groups, and in the complex case, these equations have been solved for several
comparatively small grading groups (e.g., the complete listZgrZ, ® Z,, Z3 is given

in [1]), and a computer program has been devised for handling more complicated cases [5].

In a previous paper the graded contractions ofrda orthogonal algebrao(N + 1)
associated with a fine grading grod§" were studied without relying on a computer
program, and gparticular set of solutions which depends oM real parameters was
given [6]. To know the general solution of the contraction equations for this grading
would be interesting as a first step to study similar graded contractions for algebras in the
unitary su(N + 1) and symplectic seriegp(N + 1), for which a natura[Z?N grading can
be ‘derived’ from the orthogonal one [7]; the general solution of the orthogonal contraction
equations could go a long way to provide a general solution for these other cases.

In this paper we advance tlgeneral solution for a fineZ?N grading of the real Lie
algebraso(N +1). It should be recalled that the general solution for a given graded algebra
with grading groud” is some subset of the corresponding list of solutions of the contraction
equations forl", which generically depend only on the groiip Usually this is aproper
subset; this is due to the possible presencérefevant contraction parameters which do
not actually appear in the contraction equations for the given algebra (for instance, a given
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6644 F J Herranz and M Santander

grading group element may not have a proper associated subspace, or two graded subspaces
may commute in the initial Lie algebra). As far as we know, the list of generic solutions to
the contraction equations for@’” grading group is not known. However, the strategy of
solving the contraction equations generically can be succesfully bypassed in specific cases,
as the example we are about to discuss clearly shows.

The paper is organized as follows. The structure on@é{ grading ofso(N + 1) and
the corresponding contraction equations are presented in section 2. We solve the contraction
equations in section 3 showing how thév§1) initial relevant contraction parameters turn
out to depend on’2—1 independenteal parameters. All graded contractions are continuous
in this case, and the number of possible contractions equals the expected number for a
general composition of simple IW contractions; the result is in accordance with the not
entirely obvious result in [8]: any continuous graded contraction is equivalent to some
generalized IW contraction. The solution given in [6] appears as a rather particular case, as it
corresponds to having all bt parameters fixed equal to 1. Explicit results for the simplest
cases withNV = 2, 3 are given in section 4 in order to describe the structure of the general
solution clearly; moreover, foN = 3 we introduce all thg2 + 1) kinematical algebras [9]
within the graded contracted algebrassef4) in a straightforward way, thus giving an
alternative derivation of Lie algebra kinematics from the graded contraction perspective to
that discussed in [10]. An interesting byproduct in this approach is the interpretation of the
contraction coefficients as related to curvatures of homogeneous spaces.

2. The contraction equations

Recall that agrading of a real Lie algebral. by an Abelian finite groupl’ [3] is a
decomposition of the vector space structurd.of

L=@@L, (2.1)

nel
such that ifx € L, andy € L, then [, y] belongs toL,,,:
[Ly. L] € Ly w, v, u+verl. (2.2)

A (real) graded contractionof the real Lie algebrd. [1, 2] is a real Lie algebrd.,
with the same vector space structurelasbut with Lie brackets fow € L, andy € L,
modified as follows:

[x, ¥]e == e [x, ¥] in short hand form L,, L,]. :=¢&,.[L,, L.] (2.3)
where thecontraction parameters,, , are real numbers such that is a Lie algebra; they
must satisfy thecontraction equations

Epuv = Evp Euv Eptvo = Epvto Evo - (24)

The Lie algebrao(N + 1) hasN (N +1)/2 generatord,, (a,b=0,1,..., N, a < b)
with non-zero Lie brackets:

[Jab» Jac] = Jhc [‘I[tb7 Jhc] = _Jac [Jan Jhc] = Jab a<b<ec. (25)

The fine grading group' of so(N + 1) we are going to deal with is isomorphic E?N
and is generated by a set of Zommuting involutive automorphismss : so(N + 1) —
so(N 4+ 1) whereS is any subset of the set of indic&s= {0, 1, ..., N} (see [6] for more
details). The automorphisifis is defined as

Sy = (DO, (2.6)
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where xs(i) is the characteristic function ovet, which equals either 1 or 0 fare S or
i ¢ S, respectively.
Each involutive automorphisifis provides &, grading ofso(N +1) = Lo@® L1 where
Lo is the Sg-invariant subspace (spanned by the generafgrsith either both indices or
none inSs), while L is the Ss-anti-invariant subspace (spanned by thg with a single
index in Ss). Note also thatSs = S7\s, i.e. the automorphism associated with a suldset
is the same as that associated with the complemgstin the whole set of indiceg. For
instance, ifZ = {0, 1, 2, 3}, thenSg1o = S3, S13 = So», €tc.
We choose th&v automorphismsSy, So1, Soiz ..., Soi.n_1 @S a basis for the Abelian
grading groupl” of so(N + 1). Thus, a generic elemept € I' can be written as
N—-1
w = H(SOL..k)”" mi € {0, 1} . (2.7)
k=0

A generator/,, of so(N + 1) belongs to the (one-dimensional) grading subsgacevhere
the sequencg, of ‘coordinates’ ofu is characterized by a contiguous string of 1's starting
at theath position and ending at th@ — 1)th position with 0’'s at the remaining places:

(Ju)=L, = pn={0...01,...10,...0}. (2.8)

Therefore we can denote each particylaactually appearing in the decomposition (2.1)
for the specific grading we are dealing with by the pair of indiges ab, (a < b) instead

of using its complete string. The contraction parametgrs where at least one qf, v
and i + v is not of the form (2.8) are therefore irrelevant, as the corresponding grading
subspace is the trivial null subspace. Conversely, wereldvant contraction parameters
those appearing in the contraction equations; they must paveand i + v of the form
(2.8). In [6] it was shown that in this case there a(@atsl) relevantcontraction parameters.
They can be classified in three disjoint sets:

a __ b __ c __
oy = Eabac Bae = Eab,be Vab = Eac,be a<b<ec. (2.9)

All contraction equations coming from (2.4) are naturally classed into groups of 12
equations, one group for each ordered sefoaf indicesa < b < ¢ < d:

b _pb
IBac lBaf] - ﬂad ﬂbi]

e Bpg = %4aBaa aabdabcd = aacdﬁai aabcabcd = aacdlgalfz

C(acdybcd = aabcyahd O[abdybcd = aabcyacd (210)
ﬁal:i yacd = ﬁalZ‘ ybcd ﬁbf] Vubd = J/ubcyacd lBuiI 7/abd = yabc ybcd

A eaBpa = paVar abcdlBuil = 5aZ Vab* O‘bchacd = B Vabd~

In [6] the solution of these equations under the condifigh # 0 was derived; each such
solution turns out to be equivalent to a solution with 8 = 1 and then the equations
(2.10) simplify dramatically, so that all contraction parameters can be expressed in terms of
N real independent parameters. However, when sfiheare allowed to be equal to zero,

the equations are rather complicated, and the naive case-by-case analysis succesfully done
for smaller grading groups is quickly realised an infeasible.

3. The general solution

Consider the real function® defined on the collection of all subsets D& {0, 1, ..., N},
0 : P(Z) — R, satisfying the additional conditiod(S) = 6(Z\S). We denote the
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common valued(S) = 9(Z\S) asfz"® = 63, : there are ¥ such values, one of which is

0%. The general solution of the system (2.10) can be expressed in terms of these values,
taken as independent parameters, according to following statement.

Theorem. The general solution of th@?” graded contractions of the Lie algebr@( N + 1)

depends on’? — 1 real independent parameteﬁé\‘S whereZ = {0,1,..., N} andS is a
proper subset af: S € Z. The relevant contraction parameters are given by

ot =[]05 =05 with {b, ¢} € S and{a} ¢ S
S

Bh =TTes =116 with {a,c} € S and{b} ¢ S 3.1)
S

va' =165 =[]0 with {a, b} € S and{c} ¢ S
S

where the products with inde run over all possible (proper) subsetsiothat satisfy the
conditions imposed in each case. The non-identically zero Lie brackets of the contracted
Lie algebra obtained fromo(N + 1) are

[-]abv -,ac] = aubg-]bc [‘lab’ ch] = _ﬁai Jac [‘]tha ch] = Vabc-]ab a<b<c
(3.2)

without summing over repeated indices and wétf)., 8,5, y,,° given by (3.1).

Proof. The proof is rather direct but somewhat tedious; we restrict ourselves here to
commenting on the main lines. Each of the contraction equations given in (2.10) is like
MN = PQ, where each term carries three indices (two subindices and a third single
superindex), taken out of four. The general solution of each such equation can be given in
terms of eight parametersy®, m, n', n1, pt, p1, q*, g1 as

M =m'm, N =n'ng P=pp 0=q'q1 (3.3)
which are, however, not independent, but must be subjected to four auxiliary relations
m* = p? mi = qa nt=q' ni = p1. (3.4)

Now repeat this decomposition for each equation (2.10), writing each paraméter, q)

as a symbot with two groups of indices, the first one with the same index structurd as

(N, P, Q) and taking for the second group the fourth index already present in the equation
but not in M (N, P, Q), placed either as a superindex or as a subindex, instead of the
index 1 above. For instance, the first equation of (2.10) would lead to

b __ b.d b, - c,b c, b __ b,c b, c _ c,a c,
ac — 29uc, ﬁac,d ﬁuéd - ﬁad, 1}ad,h ﬁad - I}ad, 7’9(101,0 ﬁbd - ﬂbd, ﬂhd,a
(3.5)
with the & symbols satisfying
b,d __ b,c b, __ c, c,b __ c,a c, __ b,
ﬂac, - ﬂad, 19ac,d - ﬁbd,a ﬂad, - ﬂbd, ﬁad,b - ﬂad,c . (36)

As long as all auxiliary relations are satisfied, this transforms all contraction equations
into identities, at the expense of introducing a rather large number of parameters, which
are, however, subjected to a number of auxiliary relations (similar to (3.6)), which can be
then eliminated in some adequate way. The result of the elimination boils down to two
simple rules. First, each symbg)” ¢, 9,2, ..., actually depends on the two subsets of
7 made up with the union of all subindices and the union of all superindices, so that, e.g.,
I = 9,0, = 0,2, which will simply be denoted by?, ; likewise, 9,%% = 9,24 will

ab,c abc?
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be denoted by??. Second, each symbéf? depends only on the two subsets of indices,
but not on their position as subindices or superindices, so that9&/g= 05.

However, these four inde symbols are not independent. To see this, recall that each
contraction equation involves four contraction coefficients. By using the previous device,
each of these coefficients can be written as the product offtasindex 6 symbols. But
each contraction coefficient appears several times in the whole set of contraction equations,
and to each appearance a decomposition as a product af symbols with four indices
has been allocated. For instance, the coefficigptwill appear in the first equation (2.10)
for abed = 1356 and also foubcd = 3456. For each of these appearances we have

5 51,4 5, 15,5 5 54, 5, 45,5
Bss = 1736, 1936,1 = 0350136 Bsg = 1736, 1936,4 = 0366346 (3.7)
so the coefficients must satisfy
93}659536 = 9§(?9§46~ (3.8)

In the same way we will have to enforce the equality of many such products. This comes out
in a number of quadratic equations, whose structure is again similar to the initial equations,
but each involvindive indices taken out of the s&t so the same decomposition procedure
can be applied again. For instance, each coefficieim the equation (3.8) would be
decomposed as a product of two five indgssymbols, e.g.pk = 930035, etc, where
the set of five index coefficients must satisfy auxiliary equations, derived again from (3.4)
and similar to (3.6). The elimination of these auxiliary equations boils down to the same
simple rules stated before (e.g3¢* = 935> = - -, which will be denoted by, etc,
and3s® = 632, etc). Now all equations like (3.8) are turned into identities, and only the
auxiliary equations for the five-index symbols remain.

The process is iterated until no more indices are left, at which point all equations are
transformed into identities; this explains the structure of the solution. It is easy to check

that after using (3.1) all the contraction equations (2.10) are turned into identities.(]

It is worth remarking that there exists a close relationship between the paraﬂ@tsers
and the involutive automorphisn$s. Each non-trivial involutionSs gives rise to a simple
IW contraction whose effect consists on a graded scale change with scalingfamidhe
anti-invariant generators undég (thoseJ,, where eithera or b belongs toS) followed
by the limit » — 0. This scale change only modifies the paraméfef — 1205, the
remaining ones being invariant, and in the limit— O this parameter vanishes. Thus,
there are ¥ — 1 simple IW contractions associated with the same number of non-trivial
involutions or ofZ, subgradings; the identity involutiosy would be associated withf, .,
which is the only value oﬁg\s not appearing explicitly in (3.1). The composition of two
or more of such contractions is a generalized IW contraction [8] where more than one
parameteﬂg\s go to zero at the same time (with possibly different powersa)of
It is also clear that all graded contractions are continuous for the grading we are dealing
with, as the identity element in the grading group has no associated proper subspace.
The graded contractions eb(N + 1) with all 9§\S # 0 give rise to the different non-
compact real formso(p, q) with p + g = N + 1 (besides the originalo(N + 1)). In this
case the graded contraction is not a contraction of the initial algebra in its original meaning
of limiting process. When one or moég * are zero, a non-simple Lie algebra is obtained.
It is interesting to note that the whole family of graded contractionsoON + 1) affords a
sort of ordered ‘lattice’ of algebras, starting at the simple real algelargs ¢) and ending
at the extreme case, when aﬁ\s = 0, into the Abelian algebra with all commutators zero.
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12..N 23..N 34..N N
_If we only allow tth parametersly =, 057", Og157 s -, Op1p v g 1O take over
arbitrary values enforcing the value 1 for all the remaining ones, the contracted algebra
commutation relations are

[Jab» Jac] = Kab Jhc [Jaba Jhc] = _Jac [Jam ch] = Kp¢ Jah a<b<c
3.9
where thex coefficients are defined as
Kap ‘= Kg11Kat2 « - - Kp a,b=0,...,.N a<b (3.10)
Kq = 05N a=1...,N. (3.11)

In this way the so-calledCayley—Klein algebrasthe particular case studied in [6],
are recovered. As a collective, this subfamily of graded contractions inherits (in a more
complicated form) most properties coming from the simple nature of the algehiasyg),
and is termedjuasi-simplein the literature [11].

4. Examples

Let us illustrate the results of the theorem fern3) andso(4), where from the two ways
of writing each coefficient, we have chosen that where 0 appears as a subindex, even if
this sometimes apparently spoils the simplicity of the rule (3.1).

4.1.50(3)
The grading group i%, ® Z, and is generated by the automorphisfgsand So; acting on
the generator$Jo1, Joz, J12} as

So : (Jo1, Joz, J12) —> (—Jo1, —Jo2, J12)

So1 * (Jo1, Joz, J12) —> (Jo1, —Jo2, —J12) -
These involutions endow the basissef(3) with the following grading:
Loy = L2 = {J12) Liig, = Lo1 = {(Jo1) L1y = Loz = (Jo2) (4.2)
where the indices between brackets i denote the whole sequendg,}. There are

3(2*3‘1) = 3 relevant contraction coefficients (ong one 8 and oney) which depend on

22 — 1= 3 parametergi? = 02, 6%, = 692 and?, = 69*:

(4.1)

e, 11y = €102 = @, = 6p°
1 1
€100 = 0112 = Bop = by (4.3)

£100).(11) = £0212 = Yo1° = 03, -
The commutation relations for the contracted algebraog8) are

[Jo1, Jo2] = 63%J12 [Jo1, J12] = —65,J02 [Jo2, Ji2] = 6 Jo1.- (4.4)

This family of algebras includeso(3), so(2, 1), the Euclideare(2), Poincaé p(1 + 1),
Galilean g(1 + 1) and the Abelian algebras. Upon graded contraction equivalence, the
value 63, can be reduced either to 0 or 1, and then each of the two remaining contraction
parameterg3? andé3, can be reduced to either 1, 0 eil.

This example allows us to see clearly the point commented upon in the introduction:
according to the results in [1], for a genefig ® Z, graded structure, there exist 40 non-
equivalent solutions of the complex graded equations. Even if we are dealing with real
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graded contractions, the number of inequivalent solutions here is much fewer. The reason

is easy to see: for the algebya(3) and the grading (4.2), the subspalcgy, is the trivial

null subspace, so many contraction parameters that are relevant in the generic case, turn out

to be irrelevant here. This case has also been discussed from another point of view in [12].
It is worth analysing the meaning of the three contractions constants in this example; in

fact the most interesting traits of thé-dimensional case are already present in this simplest

case. First, a notation change helps in the interpretation: we shall rewrite (4.4) as

[P]_, Pg] = /,L]_J [Pl, J] = —)\Pz [Pz, J] = [/LZP]_ . (45)

Now for each algebra (4.5) we can build three two-dimensional symmetrical homogeneous
spaces, each associated with the involuti6ps So1, So2, taking the coset space of the
graded contrated group by the subgroup generated by the elements invariant under the
involution. The first two spaces are respectively called the space of points, and the space of
lines. Each of these spaces has a canonical connection, as well as a compatible canonical
(hierarchy of) metrics, coming from a suitably modified ‘Cartan—Killing’ form, which is
defined even for non-semisimple cases and reduces to the standard afg3jorand

so(2, 1) [7]. Then the constantg; andu, turn out to be equal to the canonical curvature of

the spaces of points and lines. The conslaplays a similar role for the third homogeneous
space corresponding to the involutig, (the space of second-kind lines).

4.2.50(4)

Let us consider now th& = 3 case, with basi§/o1, Jo2, Joz, J12, J13, J23}. The groupi’3
determines the graded subspaces
L1090 = Lo1 = (Jo1) Li11g = Lo2 = (Jo2) L1113 = Loz = (Joa)

(4.6)
Lio1g = L12 = (J12) Lio1y = L1z = (J13) Liooy = L2z = (J23) .

There are @;1) = 12 relevant contraction parameters which can be written in terms of
28 — 1 =7 coefficientsd3?3, 623, 033, 632, 63,,, 03,4 035 as follows:

_ 0 123512 _ 0 123,13
£(100,(110 = €01,02 = @ 1o = 05" g3 £(100, (113 = €01,03 = & 13 = 05"V
_ 0 123,23 _ 1 23,1
{110,111 = €0203 = ® 3 = 63" 01 £(010},(01y = €1213 = @3 = 04160,3
_ _pl _ 1351 _ _al _ pl2pl
£(010,(100 = 0112 = Bz = 030023 £(013,1100 = €01,13 = Poz = 0p30023 @7)
_ _p2 _ pl2p2 _ _ p2 _ pl3pn2 ’
(001,110 = 0223 = Poz = 6530013 €(003,(010 = €1223 = P13 = 630013
_ _ 2 _ 23,2 _ — . 3_ 23,3
£(110,(010 = €0212 = Yo~ = 0516013 €(113,(011 = €0313 = Vo1~ = 0510012
_ _ . 3_ 13,3 _ — ., 3_ pl12p3
£{111,(003 = €0323 = Yoz = 0026012 €(011,(00y = €1323 = ¥15° = 0p30012

and for the contracted algebra we have the following non-identically vanishing Lie brackets:

[Jo1, Joz] = 63°%55 12 [Jo1, J12] = —693957302 [Jo2, J12] = 0570513J01

[Jo1, Joa] = 05263313 [Jo1, J13] = —03203,3J03 [Jos. J13] = 63368, ,J01 4.8)
[Jo2, Joa] = 057033 )23 [Joz, J23] = —03203,3J03 [Joz, J23] = 0330812702
[J12, J13] = 60330553723 [J12, Jo3] = —0530313)13 [J13, J23] = 033635712

For each three-dimensional subalgebra, a structure like (4.4) is found, the structure constants
now being the products of two parametérs
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Itis interesting to find out how the 1P+ 1) kinematical algebras [9] appear as particular
graded contracted algebras @f(4). Let us take a physical bas{$#i, P1, Ps, K1, K>, J3}
whose elements generate the time translation, two space translations, two boosts and one
space rotation, respectively. We can consider the following identification with the ‘abstract’
basis{J,;}:
H=Jn Py = Jo» P> = Jos Ki=Jp Ko = Ji3 J3 = Jo3.

(4.9)

The most restrictive requirement to be imposed on these algebras is the automorphism

condition on parity and time reversal; this is automatically taken into account using graded

contractions, and these transformations correspond to the automorphisnasid So3,
respectively. Ordinary physical space isotropy is translated into the requirement

[J3,H] =0 [J3, P] = €3 P; [J3, Ki] = e3ijK; . (4.10)
This condition implies
9&??9313 = 9(}239512 = 9&239513 = 9013?9312 =1. (4.11)

Then the four coefficientss, 632, 63, 623 must simultaneously be different from zero,

and are determined by any of them, which by means of a simple rescaling can be made

equal to 1; we will assume therefore that all these contraction coefficients remain equal to 1

(in this way Euclidean-like space isotropy will be preserved under graded contractions).
Thus any possible kinematical algebra is completely described by the values of three

independentcontraction constants}}?3, 3% and 63,,, a rather expected outcome as by

imposing space isotropy we are indeed reducing the proble¢h t01) kinematics, where

the most general solution (4.4) depends on three contraction parameters. The commutators

(4.8) in the basis (4.9) read

[H, P;] = 6;2%K; [H, K;] = 05,3 P; [P, K] =668 H

_ 123,23 _ 231 —— (4.12)
[Py, P2] = 0577051 I3 [K1, K2] = 0010023 J3 i,j=12.

Finally, the boosts generate a non-compact group Wggdg,; < 0, so this condition should
also be enforced.

A clearer view is obtained by performing a notational change at this péit.= 1.1,
022 = pp and 6,3 = A, SO that' the (1+1) kinematical subalgebra generated/by:, K,
(and alsoH, P,, K>) closes a Lie algebra (4.5)

[H, P] = u1 K; [H,Ki] =—AP, [P, K;] = diju2 H

[P1, P2] = papz J3 [K1, Ko] = p2h J3 i,j=12.

The constank can be reduced either to 0 or to 1 by means of an equivalence; we will
always assume it takes on these values. The physical meaning of contraction parameters can
also be clearly seen in the commutation relations (4.13) as linked to geometrical properties of
the corresponding homogeneous spaces. The most important is spacetime itself: spacetime
curvature (i.e. along 2-flat directions likex] and ¢y)) equalsu1, so De Sitter and Newton—
Hooke universes have non-zero constant spacetime curvature, while Galilei or Minkowski
have zero curvature. Two-dimensional space curvature (along the 2+flatwe could say
space—space curvature) equals the progygt,, and can therefore be zero whga = 0,
even if the spacetime curvature is different from zero; this is the case in the non-relativistic
Newton—Hooke algebras, which has a flat 2-space. However, wheg 0, spacetime
curvature and space curvature are linked, and appear simultaneously.

(4.13)
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Likewise, the constant, is the curvature of the space of lines, which is negative in
the ‘relativistic’ spacetimes and zero in the non-relativistic ones; positive values are not
allowed as they would lead to compact inertial transformations. In fact the curvature of
the space of lines is linked to the fundamental constaot relativistic theories according
to up = —1/c?, and special relativity is no more than stating that the kinematical space of
lines has a constant non-zero (negative) curvature.

Each of the possible values of the pair, A is coupled with the three possible values for
the ordinary spacetime curvaturg. This way, all graded contraction constants appear as
physical parameters, whose values are determined by the geometrical properties of spacetime
itself.

We summarize the results in table 1, where the usual physical hame of the algebra is
displayed along with the values of the contraction coefficients. The first six algebras are
‘relative-time’ type, while the six remaining are ‘absolute-time’ type. The spacetime, speed-
space and speed-time contractions correspond, in this order, to the cancellation.of
anda, and the algebras are classed naturally in four groups of three algebras, corresponding
to the three essentially different valuesiof, The unphysical para-Galilei case is somewhat
exceptional as botjy; = 1 andu; = —1 lead to isomorphic algebras.

Table 1. Kinematical algebras as graded contractionsaif}).

Kinematical algebra ni M2 A
De Sitter s0(3, 1) -1 -1 1
Poincaé iso(2,1) 0 -1 1
Anti-De Sitter s0(2,2) 1 -1 1
Inhomogeneouso(3) iso(3) -1 -1 0
Carroll ii'so(2) 0 -1 0
Para-Poincdr iso(2,1) 1 -1 0
Expanding Newton—Hooke 14(so(2) & so(1, 1)) -1 0 1
Galilei iiso(2) 0 0 1
Oscillating Newton—Hooke 14(so(2) @ so(2)) 1 0 1
Para-Galilei iiso(2) -1 0 0
Static 0 0 0
Para-Galilei iiso(2) 1 0 0

The kinematical algebras in higher dimensions can be obtained in a similar way. We
would also like to recall that a family df, ® Z, graded contractions of any real form of
the complex Lie algebr®, contains the(3 + 1) kinematical algebras; this procedure was
used in [10].
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