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Abstract. The general solution of the graded contraction equations for aZ⊗N
2 grading of

the real compact simple Lie algebraso(N + 1) is presented in an explicit way. It turns
out to depend on 2N − 1 independent real parameters. The structure of the general graded
contractions is displayed for the low-dimensional cases, and kinematical algebras are shown to
appear straightforwardly. The geometrical (or physical) meaning of the contraction parameters
as curvatures is also analysed; in particular, for kinematical algebras these curvatures are directly
linked to geometrical properties of possible homogeneous spacetimes.

1. Introduction

Graded contractions of (complex or real) Lie algebras have been introduced by de Montigny,
Patera and Moody [1, 2] as a new approach encompassing the study of ordinary contractions
of Lie algebras and allowing the contraction of representations to be simultaneously studied.
The approach is based on the so-calledcontraction equations, which determine all possible
contractedLie algebras compatible with a given grading of some initial Lie algebra [3].
Ordinary (simple) In̈onü–Wigner (IW) contractions [4] appear as related to aZ2 grading; the
solution of the contraction equations is straightforward in this case. For more complicated
grading groups, and in the complex case, these equations have been solved for several
comparatively small grading groups (e.g., the complete list forZ2, Z2 ⊗ Z2, Z3 is given
in [1]), and a computer program has been devised for handling more complicated cases [5].

In a previous paper the graded contractions of thereal orthogonal algebraso(N + 1)

associated with a fine grading groupZ⊗N
2 were studied without relying on a computer

program, and aparticular set of solutions which depends onN real parameters was
given [6]. To know the general solution of the contraction equations for this grading
would be interesting as a first step to study similar graded contractions for algebras in the
unitary su(N + 1) and symplectic seriessp(N + 1), for which a naturalZ⊗N

2 grading can
be ‘derived’ from the orthogonal one [7]; the general solution of the orthogonal contraction
equations could go a long way to provide a general solution for these other cases.

In this paper we advance thegeneral solution for a fineZ⊗N
2 grading of the real Lie

algebraso(N +1). It should be recalled that the general solution for a given graded algebra
with grading group0 is some subset of the corresponding list of solutions of the contraction
equations for0, which generically depend only on the group0. Usually this is aproper
subset; this is due to the possible presence ofirrelevant contraction parameters which do
not actually appear in the contraction equations for the given algebra (for instance, a given

0305-4470/96/206643+10$19.50c© 1996 IOP Publishing Ltd 6643



6644 F J Herranz and M Santander

grading group element may not have a proper associated subspace, or two graded subspaces
may commute in the initial Lie algebra). As far as we know, the list of generic solutions to
the contraction equations for aZ⊗N

2 grading group is not known. However, the strategy of
solving the contraction equations generically can be succesfully bypassed in specific cases,
as the example we are about to discuss clearly shows.

The paper is organized as follows. The structure of theZ⊗N
2 grading ofso(N + 1) and

the corresponding contraction equations are presented in section 2. We solve the contraction
equations in section 3 showing how the 3

(
N+1

3

)
initial relevant contraction parameters turn

out to depend on 2N −1 independentreal parameters. All graded contractions are continuous
in this case, and the number of possible contractions equals the expected number for a
general composition of simple IW contractions; the result is in accordance with the not
entirely obvious result in [8]: any continuous graded contraction is equivalent to some
generalized IW contraction. The solution given in [6] appears as a rather particular case, as it
corresponds to having all butN parameters fixed equal to 1. Explicit results for the simplest
cases withN = 2, 3 are given in section 4 in order to describe the structure of the general
solution clearly; moreover, forN = 3 we introduce all the(2+ 1) kinematical algebras [9]
within the graded contracted algebras ofso(4) in a straightforward way, thus giving an
alternative derivation of Lie algebra kinematics from the graded contraction perspective to
that discussed in [10]. An interesting byproduct in this approach is the interpretation of the
contraction coefficients as related to curvatures of homogeneous spaces.

2. The contraction equations

Recall that agrading of a real Lie algebraL by an Abelian finite group0 [3] is a
decomposition of the vector space structure ofL:

L =
⊕
µ∈0

Lµ (2.1)

such that ifx ∈ Lµ andy ∈ Lν then [x, y] belongs toLµ+ν :

[Lµ, Lν ] ⊆ Lµ+ν µ, ν, µ + ν ∈ 0. (2.2)

A (real) graded contractionof the real Lie algebraL [1, 2] is a real Lie algebraLε

with the same vector space structure asL, but with Lie brackets forx ∈ Lµ and y ∈ Lν

modified as follows:

[x, y]ε := εµ,ν [x, y] in short hand form [Lµ, Lν ]ε := εµ,ν [Lµ, Lν ] (2.3)

where thecontraction parametersεµ,ν are real numbers such thatLε is a Lie algebra; they
must satisfy thecontraction equations

εµ,ν = εν,µ εµ,ν εµ+ν,σ = εµ,ν+σ εν,σ . (2.4)

The Lie algebraso(N +1) hasN(N +1)/2 generatorsJab (a, b = 0, 1, . . . , N, a < b)

with non-zero Lie brackets:

[Jab, Jac] = Jbc [Jab, Jbc] = −Jac [Jac, Jbc] = Jab a < b < c . (2.5)

The fine grading group0 of so(N + 1) we are going to deal with is isomorphic toZ⊗N
2

and is generated by a set of 2N commuting involutive automorphismsSS : so(N + 1) →
so(N + 1) whereS is any subset of the set of indicesI = {0, 1, . . . , N} (see [6] for more
details). The automorphismSS is defined as

SSJab = (−1)χS (a)+χS (b)Jab (2.6)
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whereχS(i) is the characteristic function overS, which equals either 1 or 0 fori ∈ S or
i /∈ S, respectively.

Each involutive automorphismSS provides aZ2 grading ofso(N +1) = L0⊕L1 where
L0 is theSS -invariant subspace (spanned by the generatorsJab with either both indices or
none inSS ), while L1 is theSS -anti-invariant subspace (spanned by theJab with a single
index in SS ). Note also thatSS ≡ SI\S , i.e. the automorphism associated with a subsetS
is the same as that associated with the complementI\S in the whole set of indicesI. For
instance, ifI = {0, 1, 2, 3}, thenS012 ≡ S3, S13 ≡ S02, etc.

We choose theN automorphismsS0, S01, S012, . . . , S01...N−1 as a basis for the Abelian
grading group0 of so(N + 1). Thus, a generic elementµ ∈ 0 can be written as

µ =
N−1∏
k=0

(S01...k)
µk µk ∈ {0, 1} . (2.7)

A generatorJab of so(N + 1) belongs to the (one-dimensional) grading subspaceLµ where
the sequenceµk of ‘coordinates’ ofµ is characterized by a contiguous string of 1’s starting
at theath position and ending at the(b − 1)th position with 0’s at the remaining places:

〈Jab〉 = Lµ ≡ µ = {0 . . . 01a . . . 10b . . . 0}. (2.8)

Therefore we can denote each particularµ actually appearing in the decomposition (2.1)
for the specific grading we are dealing with by the pair of indicesµ ≡ ab, (a < b) instead
of using its complete string. The contraction parametersεµ,ν where at least one ofµ, ν

and µ + ν is not of the form (2.8) are therefore irrelevant, as the corresponding grading
subspace is the trivial null subspace. Conversely, we callrelevant contraction parameters
those appearing in the contraction equations; they must haveµ, ν andµ + ν of the form
(2.8). In [6] it was shown that in this case there are 3

(
N+1

3

)
relevantcontraction parameters.

They can be classified in three disjoint sets:

αa
bc ≡ εab,ac β b

ac ≡ εab,bc γ c
ab ≡ εac,bc a < b < c. (2.9)

All contraction equations coming from (2.4) are naturally classed into groups of 12
equations, one group for each ordered set offour indicesa < b < c < d:

β b
ac β c

ad = β b
ad β c

bd

αa
bcβ

c
bd = αa

bdβ
c

ad αa
bdα

b
cd = αa

cdβ
b

ac αa
bcα

b
cd = αa

cdβ
b

ad

αa
cdγ

d
bc = αa

bcγ
d

ab αa
bdγ

d
bc = αa

bcγ
d

ac

β b
ad γ d

ac = β b
ac γ d

bc β c
bd γ d

ab = γ c
ab γ d

ac β c
ad γ d

ab = γ c
ab γ d

bc

αa
cdβ

c
bd = αa

bdγ
c

ab αb
cdβ

c
ad = β b

ad γ c
ab αb

cdγ
d

ac = β b
ac γ d

ab .

(2.10)

In [6] the solution of these equations under the conditionβ b
ac 6= 0 was derived; each such

solution turns out to be equivalent to a solution with allβ b
ac = 1 and then the equations

(2.10) simplify dramatically, so that all contraction parameters can be expressed in terms of
N real independent parameters. However, when someβ b

ac are allowed to be equal to zero,
the equations are rather complicated, and the naive case-by-case analysis succesfully done
for smaller grading groups is quickly realised an infeasible.

3. The general solution

Consider the real functionsθ defined on the collection of all subsets ofI = {0, 1, . . . , N},
θ : P(I) −→ R, satisfying the additional conditionθ(S) ≡ θ(I\S). We denote the
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common valueθ(S) ≡ θ(I\S) asθ
I\S
S ≡ θS

I\S ; there are 2N such values, one of which is

θ∅
I . The general solution of the system (2.10) can be expressed in terms of these values,

taken as independent parameters, according to following statement.

Theorem. The general solution of theZ⊗N
2 graded contractions of the Lie algebraso(N +1)

depends on 2N − 1 real independent parametersθ
I\S
S whereI = {0, 1, . . . , N} andS is a

proper subset ofI: S ⊂ I. The relevant contraction parameters are given by

αa
bc =

∏
S

θ
I\S
S =

∏
θa...
bc... with {b, c} ⊆ S and{a} /∈ S

β b
ac =

∏
S

θ
I\S
S =

∏
θb...
ac... with {a, c} ⊆ S and{b} /∈ S

γ c
ab =

∏
S

θ
I\S
S =

∏
θc...
ab... with {a, b} ⊆ S and{c} /∈ S

(3.1)

where the products with indexS run over all possible (proper) subsets ofI that satisfy the
conditions imposed in each case. The non-identically zero Lie brackets of the contracted
Lie algebra obtained fromso(N + 1) are

[Jab, Jac] = αa
bcJbc [Jab, Jbc] = −β b

ac Jac [Jac, Jbc] = γ c
ab Jab a < b < c

(3.2)

without summing over repeated indices and withαa
bc, β b

ac , γ c
ab given by (3.1).

Proof. The proof is rather direct but somewhat tedious; we restrict ourselves here to
commenting on the main lines. Each of the contraction equations given in (2.10) is like
MN = PQ, where each term carries three indices (two subindices and a third single
superindex), taken out of four. The general solution of each such equation can be given in
terms of eight parameters,m1, m1, n

1, n1, p
1, p1, q

1, q1 as

M = m1m1 N = n1n1 P = p1p1 Q = q1q1 (3.3)

which are, however, not independent, but must be subjected to four auxiliary relations

m1 = p1 m1 = q1 n1 = q1 n1 = p1. (3.4)

Now repeat this decomposition for each equation (2.10), writing each parameterm (n, p, q)
as a symbolϑ with two groups of indices, the first one with the same index structure asM

(N, P, Q) and taking for the second group the fourth index already present in the equation
but not in M (N, P, Q), placed either as a superindex or as a subindex, instead of the
index 1 above. For instance, the first equation of (2.10) would lead to

β b
ac = ϑ b ,d

ac, ϑ
b ,

ac,d β c
ad = ϑ

c ,b
ad, ϑ

c ,
ad,b β b

ad = ϑ
b ,c

ad, ϑ
b ,

ad,c β c
bd = ϑ

c ,a
bd, ϑ

c ,
bd,a

(3.5)

with the ϑ symbols satisfying

ϑ b ,d
ac, = ϑ

b ,c
ad, ϑ

b ,
ac,d = ϑ

c ,
bd,a ϑ

c ,b
ad, = ϑ

c ,a
bd, ϑ

c ,
ad,b = ϑ

b ,
ad,c . (3.6)

As long as all auxiliary relations are satisfied, this transforms all contraction equations
into identities, at the expense of introducing a rather large number of parameters, which
are, however, subjected to a number of auxiliary relations (similar to (3.6)), which can be
then eliminated in some adequate way. The result of the elimination boils down to two
simple rules. First, each symbolϑ b ,d

ac, , ϑ
b ,

ac,d , . . . , actually depends on the two subsets of
I made up with the union of all subindices and the union of all superindices, so that, e.g.,
ϑ

d,
ab,c = ϑ

d ,
ac,b = ϑ

d,
bc,a, which will simply be denoted byθd

abc; likewise, ϑ d,b
ac, = ϑ b ,d

ac, will
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be denoted byθbd
ac . Second, each symbolθbd

ac depends only on the two subsets of indices,
but not on their position as subindices or superindices, so that, e.g.,θbd

ac = θac
bd .

However, these four indexθ symbols are not independent. To see this, recall that each
contraction equation involves four contraction coefficients. By using the previous device,
each of these coefficients can be written as the product of twofour-index θ symbols. But
each contraction coefficient appears several times in the whole set of contraction equations,
and to each appearance a decomposition as a product of twoθ symbols with four indices
has been allocated. For instance, the coefficientβ 5

36 will appear in the first equation (2.10)
for abcd = 1356 and also forabcd = 3456. For each of these appearances we have

β 5
36 = ϑ

5 ,1
36, ϑ

5 ,
36,1 = θ15

36θ5
136 β 5

36 = ϑ
5 ,4

36, ϑ
5 ,

36,4 = θ45
36θ5

346 (3.7)

so the coefficientsθ must satisfy

θ15
36θ5

136 = θ45
36θ5

346 . (3.8)

In the same way we will have to enforce the equality of many such products. This comes out
in a number of quadratic equations, whose structure is again similar to the initial equations,
but each involvingfive indices taken out of the setI, so the same decomposition procedure
can be applied again. For instance, each coefficientθ in the equation (3.8) would be
decomposed as a product of two five indexϑ symbols, e.g.,θ15

36 = ϑ
15,4
36, ϑ

1 ,5
36,4, etc, where

the set of five index coefficientsϑ must satisfy auxiliary equations, derived again from (3.4)
and similar to (3.6). The elimination of these auxiliary equations boils down to the same
simple rules stated before (e.g.,ϑ

15,4
36, = ϑ

14,5
36, = · · ·, which will be denoted byθ145

36 , etc,
and θ145

36 = θ36
145, etc). Now all equations like (3.8) are turned into identities, and only the

auxiliary equations for the five-indexθ symbols remain.
The process is iterated until no more indices are left, at which point all equations are

transformed into identities; this explains the structure of the solution. It is easy to check
that after using (3.1) all the contraction equations (2.10) are turned into identities.�

It is worth remarking that there exists a close relationship between the parametersθ
I\S
S

and the involutive automorphismsSS . Each non-trivial involutionSS gives rise to a simple
IW contraction whose effect consists on a graded scale change with scaling factorλ on the
anti-invariant generators underSS (thoseJab where eithera or b belongs toS) followed
by the limit λ → 0. This scale change only modifies the parameterθ

I\S
S → λ2θ

I\S
S , the

remaining ones being invariant, and in the limitλ → 0 this parameter vanishes. Thus,
there are 2N − 1 simple IW contractions associated with the same number of non-trivial
involutions or ofZ2 subgradings; the identity involutionSI would be associated withθ∅

01...N ,
which is the only value ofθI\S

S not appearing explicitly in (3.1). The composition of two
or more of such contractions is a generalized IW contraction [8] where more than one
parameterθI\S

S go to zero at the same time (with possibly different powers ofλ).
It is also clear that all graded contractions are continuous for the grading we are dealing

with, as the identity element in the grading group has no associated proper subspace.
The graded contractions ofso(N + 1) with all θ

I\S
S 6= 0 give rise to the different non-

compact real formsso(p, q) with p + q = N + 1 (besides the originalso(N + 1)). In this
case the graded contraction is not a contraction of the initial algebra in its original meaning
of limiting process. When one or moreθI\S

S are zero, a non-simple Lie algebra is obtained.
It is interesting to note that the whole family of graded contractions ofso(N + 1) affords a
sort of ordered ‘lattice’ of algebras, starting at the simple real algebrasso(p, q) and ending
at the extreme case, when allθ

I\S
S = 0, into the Abelian algebra with all commutators zero.
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If we only allow the N parametersθ12...N
0 , θ23...N

01 , θ34...N
012 , . . . , θN

012...N−1 to take over
arbitrary values enforcing the value 1 for all the remaining ones, the contracted algebra
commutation relations are

[Jab, Jac] = κab Jbc [Jab, Jbc] = −Jac [Jac, Jbc] = κbc Jab a < b < c

(3.9)

where theκ coefficients are defined as

κab := κa+1κa+2 . . . κb a, b = 0, . . . , N a < b (3.10)

κa := θa...N
0...a−1 a = 1, . . . , N . (3.11)

In this way the so-calledCayley–Klein algebras, the particular case studied in [6],
are recovered. As a collective, this subfamily of graded contractions inherits (in a more
complicated form) most properties coming from the simple nature of the algebrasso(p, q),
and is termedquasi-simplein the literature [11].

4. Examples

Let us illustrate the results of the theorem forso(3) and so(4), where from the two ways
of writing each coefficientθ , we have chosen that where 0 appears as a subindex, even if
this sometimes apparently spoils the simplicity of the rule (3.1).

4.1. so(3)

The grading group isZ2 ⊗ Z2 and is generated by the automorphismsS0 andS01 acting on
the generators{J01, J02, J12} as

S0 : (J01, J02, J12) −→ (−J01, −J02, J12)

S01 : (J01, J02, J12) −→ (J01, −J02, −J12) .
(4.1)

These involutions endow the basis ofso(3) with the following grading:

L{01} ≡ L12 = 〈J12〉 L{10} ≡ L01 = 〈J01〉 L{11} ≡ L02 = 〈J02〉 (4.2)

where the indices between brackets inLµ denote the whole sequence{µk}. There are
3
(2+1

3

) = 3 relevant contraction coefficients (oneα, one β and oneγ ) which depend on
22 − 1 = 3 parametersθ12

0 ≡ θ0
12, θ1

02 ≡ θ02
1 andθ2

01 ≡ θ01
2 :

ε{10},{11} = ε01,02 ≡ α0
12 = θ12

0

ε{10},{01} = ε01,12 ≡ β 1
02 = θ1

02

ε{01},{11} = ε02,12 ≡ γ 2
01 = θ2

01 .

(4.3)

The commutation relations for the contracted algebra ofso(3) are

[J01, J02] = θ12
0 J12 [J01, J12] = −θ1

02J02 [J02, J12] = θ2
01J01 . (4.4)

This family of algebras includesso(3), so(2, 1), the Euclideane(2), Poincaŕe p(1 + 1),
Galilean g(1 + 1) and the Abelian algebras. Upon graded contraction equivalence, the
value θ1

02 can be reduced either to 0 or 1, and then each of the two remaining contraction
parametersθ12

0 andθ2
01 can be reduced to either 1, 0 or−1.

This example allows us to see clearly the point commented upon in the introduction:
according to the results in [1], for a genericZ2 ⊗ Z2 graded structure, there exist 40 non-
equivalent solutions of the complex graded equations. Even if we are dealing with real
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graded contractions, the number of inequivalent solutions here is much fewer. The reason
is easy to see: for the algebraso(3) and the grading (4.2), the subspaceL{00} is the trivial
null subspace, so many contraction parameters that are relevant in the generic case, turn out
to be irrelevant here. This case has also been discussed from another point of view in [12].

It is worth analysing the meaning of the three contractions constants in this example; in
fact the most interesting traits of theN -dimensional case are already present in this simplest
case. First, a notation change helps in the interpretation: we shall rewrite (4.4) as

[P1, P2] = µ1J [P1, J ] = −λP2 [P2, J ] = µ2P1 . (4.5)

Now for each algebra (4.5) we can build three two-dimensional symmetrical homogeneous
spaces, each associated with the involutionsS0, S01, S02, taking the coset space of the
graded contrated group by the subgroup generated by the elements invariant under the
involution. The first two spaces are respectively called the space of points, and the space of
lines. Each of these spaces has a canonical connection, as well as a compatible canonical
(hierarchy of) metrics, coming from a suitably modified ‘Cartan–Killing’ form, which is
defined even for non-semisimple cases and reduces to the standard one forso(3) and
so(2, 1) [7]. Then the constantsµ1 andµ2 turn out to be equal to the canonical curvature of
the spaces of points and lines. The constantλ plays a similar role for the third homogeneous
space corresponding to the involutionS02 (the space of second-kind lines).

4.2. so(4)

Let us consider now theN = 3 case, with basis{J01, J02, J03, J12, J13, J23}. The groupZ⊗3
2

determines the graded subspaces

L{100} ≡ L01 = 〈J01〉 L{110} ≡ L02 = 〈J02〉 L{111} ≡ L03 = 〈J03〉
L{010} ≡ L12 = 〈J12〉 L{011} ≡ L13 = 〈J13〉 L{001} ≡ L23 = 〈J23〉 .

(4.6)

There are 3
(3+1

3

) = 12 relevant contraction parameters which can be written in terms of
23 − 1 = 7 coefficientsθ123

0 , θ23
01, θ13

02, θ12
03, θ3

012, θ2
013, θ1

023 as follows:

ε{100},{110} = ε01,02 ≡ α0
12 = θ123

0 θ12
03 ε{100},{111} = ε01,03 ≡ α0

13 = θ123
0 θ13

02

ε{110},{111} = ε02,03 ≡ α0
23 = θ123

0 θ23
01 ε{010},{011} = ε12,13 ≡ α1

23 = θ23
01θ1

023

ε{010},{100} = ε01,12 ≡ β 1
02 = θ13

02θ1
023 ε{011},{100} = ε01,13 ≡ β 1

03 = θ12
03θ1

023

ε{001},{110} = ε02,23 ≡ β 2
03 = θ12

03θ2
013 ε{001},{010} = ε12,23 ≡ β 2

13 = θ13
02θ2

013

ε{110},{010} = ε02,12 ≡ γ 2
01 = θ23

01θ2
013 ε{111},{011} = ε03,13 ≡ γ 3

01 = θ23
01θ3

012

ε{111},{001} = ε03,23 ≡ γ 3
02 = θ13

02θ3
012 ε{011},{001} = ε13,23 ≡ γ 3

12 = θ12
03θ3

012

(4.7)

and for the contracted algebra we have the following non-identically vanishing Lie brackets:

[J01, J02] = θ123
0 θ12

03J12 [J01, J12] = −θ13
02θ1

023J02 [J02, J12] = θ23
01θ2

013J01

[J01, J03] = θ123
0 θ13

02J13 [J01, J13] = −θ12
03θ1

023J03 [J03, J13] = θ23
01θ3

012J01

[J02, J03] = θ123
0 θ23

01J23 [J02, J23] = −θ12
03θ2

013J03 [J03, J23] = θ13
02θ3

012J02

[J12, J13] = θ23
01θ1

023J23 [J12, J23] = −θ13
02θ2

013J13 [J13, J23] = θ12
03θ3

012J12 .

(4.8)

For each three-dimensional subalgebra, a structure like (4.4) is found, the structure constants
now being the products of two parametersθ .
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It is interesting to find out how the 11(2+1) kinematical algebras [9] appear as particular
graded contracted algebras ofso(4). Let us take a physical basis{H, P1, P2, K1, K2, J3}
whose elements generate the time translation, two space translations, two boosts and one
space rotation, respectively. We can consider the following identification with the ‘abstract’
basis{Jab}:
H ≡ J01 P1 ≡ J02 P2 ≡ J03 K1 ≡ J12 K2 ≡ J13 J3 ≡ J23 .

(4.9)

The most restrictive requirement to be imposed on these algebras is the automorphism
condition on parity and time reversal; this is automatically taken into account using graded
contractions, and these transformations correspond to the automorphismsS01 and S023,
respectively. Ordinary physical space isotropy is translated into the requirement

[J3, H ] = 0 [J3, Pi ] = ε3ijPj [J3, Ki ] = ε3ijKj . (4.10)

This condition implies

θ12
03θ2

013 = θ13
02θ3

012 = θ13
02θ2

013 = θ12
03θ3

012 = 1 . (4.11)

Then the four coefficientsθ13
02, θ12

03, θ3
012, θ2

013 must simultaneously be different from zero,
and are determined by any of them, which by means of a simple rescaling can be made
equal to 1; we will assume therefore that all these contraction coefficients remain equal to 1
(in this way Euclidean-like space isotropy will be preserved under graded contractions).

Thus any possible kinematical algebra is completely described by the values of three
independentcontraction constants,θ123

0 , θ23
01 and θ1

023, a rather expected outcome as by
imposing space isotropy we are indeed reducing the problem to(1 + 1) kinematics, where
the most general solution (4.4) depends on three contraction parameters. The commutators
(4.8) in the basis (4.9) read

[H, Pi ] = θ123
0 Ki [H, Ki ] = −θ1

023Pi [Pi, Kj ] = δij θ
23
01 H

[P1, P2] = θ123
0 θ23

01 J3 [K1, K2] = θ23
01θ1

023J3 i, j = 1, 2 .
(4.12)

Finally, the boosts generate a non-compact group whenθ23
01θ1

023 6 0, so this condition should
also be enforced.

A clearer view is obtained by performing a notational change at this point:θ123
0 ≡ µ1,

θ23
01 ≡ µ2 and θ1

023 ≡ λ, so that the (1+1) kinematical subalgebra generated byH, P1, K1

(and alsoH, P2, K2) closes a Lie algebra (4.5)

[H, Pi ] = µ1 Ki [H, Ki ] = −λ Pi [Pi, Kj ] = δijµ2 H

[P1, P2] = µ1µ2 J3 [K1, K2] = µ2λ J3 i, j = 1, 2 .
(4.13)

The constantλ can be reduced either to 0 or to 1 by means of an equivalence; we will
always assume it takes on these values. The physical meaning of contraction parameters can
also be clearly seen in the commutation relations (4.13) as linked to geometrical properties of
the corresponding homogeneous spaces. The most important is spacetime itself: spacetime
curvature (i.e. along 2-flat directions like (tx) and (ty)) equalsµ1, so De Sitter and Newton–
Hooke universes have non-zero constant spacetime curvature, while Galilei or Minkowski
have zero curvature. Two-dimensional space curvature (along the 2-flat (xy), we could say
space–space curvature) equals the productµ1µ2, and can therefore be zero whenµ2 = 0,
even if the spacetime curvature is different from zero; this is the case in the non-relativistic
Newton–Hooke algebras, which has a flat 2-space. However, whenµ2 6= 0, spacetime
curvature and space curvature are linked, and appear simultaneously.
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Likewise, the constantµ2 is the curvature of the space of lines, which is negative in
the ‘relativistic’ spacetimes and zero in the non-relativistic ones; positive values are not
allowed as they would lead to compact inertial transformations. In fact the curvature of
the space of lines is linked to the fundamental constantc of relativistic theories according
to µ2 = −1/c2, and special relativity is no more than stating that the kinematical space of
lines has a constant non-zero (negative) curvature.

Each of the possible values of the pairµ2, λ is coupled with the three possible values for
the ordinary spacetime curvatureµ1. This way, all graded contraction constants appear as
physical parameters, whose values are determined by the geometrical properties of spacetime
itself.

We summarize the results in table 1, where the usual physical name of the algebra is
displayed along with the values of the contraction coefficients. The first six algebras are
‘relative-time’ type, while the six remaining are ‘absolute-time’ type. The spacetime, speed-
space and speed-time contractions correspond, in this order, to the cancellation ofµ1, µ2

andλ, and the algebras are classed naturally in four groups of three algebras, corresponding
to the three essentially different values ofµ1; The unphysical para-Galilei case is somewhat
exceptional as bothµ1 = 1 andµ1 = −1 lead to isomorphic algebras.

Table 1. Kinematical algebras as graded contractions ofso(4).

Kinematical algebra µ1 µ2 λ

De Sitter so(3, 1) −1 −1 1
Poincaŕe iso(2, 1) 0 −1 1
Anti-De Sitter so(2, 2) 1 −1 1
Inhomogeneousso(3) iso(3) −1 −1 0
Carroll ii′so(2) 0 −1 0
Para-Poincaŕe iso(2, 1) 1 −1 0

Expanding Newton–Hooke t4(so(2) ⊕ so(1, 1)) −1 0 1
Galilei iiso(2) 0 0 1
Oscillating Newton–Hooke t4(so(2) ⊕ so(2)) 1 0 1
Para-Galilei iiso(2) −1 0 0
Static 0 0 0
Para-Galilei iiso(2) 1 0 0

The kinematical algebras in higher dimensions can be obtained in a similar way. We
would also like to recall that a family ofZ2 ⊗ Z2 graded contractions of any real form of
the complex Lie algebraB2 contains the(3 + 1) kinematical algebras; this procedure was
used in [10].
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